Filter Theory of Bounded Residuated Lattice Ordered Monoids
نویسندگان
چکیده
Bounded residuated lattice ordered monoids (R -monoids) are a common generalization of pseudo-BL-algebras and Heyting algebras, i.e. algebras of the non-commutative basic fuzzy logic (and consequently of the basic fuzzy logic, the Łukasiewicz logic and the non-commutative Łukasiewicz logic) and the intuitionistic logic, respectively. In the paper we introduce and study classes of filters of bounded R -monoids leading (in normal cases) to quotient algebras which are Heyting algebras, Boolean algebras and GMV -algebras (= pseudo-MV -algebras), respectively.
منابع مشابه
On the Finite Embeddability Property for Residuated Ordered Groupoids
The finite embeddability property (FEP) for integral, commutative residuated ordered monoids was established by W. J. Blok and C. J. van Alten in 2002. Using Higman’s finite basis theorem for divisibility orders we prove that the assumptions of commutativity and associativity are not required: the classes of integral residuated ordered monoids and integral residuated ordered groupoids have the ...
متن کاملClasses of Fuzzy Filters of Residuated Lattice Ordered Monoids
The logical foundations of processes handling uncertainty in information use some classes of algebras as algebraic semantics. Bounded residuated lattice ordered monoids (Rl-monoids) are common generalizations of BL-algebras, i.e., algebras of the propositional basic fuzzy logic, and Heyting algebras, i.e., algebras of the propositional intuitionistic logic. From the point of view of uncertain i...
متن کاملFuzzy filters and fuzzy prime filters of bounded R
The logical foundations of processes handling uncertainty in information use some classes of algebras as algebraic semantics. The sets of provable formulas in corresponding inference systems from the point of view of uncertain information can be described by fuzzy filters of those algebraic semantics. Bounded residuated lattice ordered monoids (R`-monoids) are a common generalization of pseudo ...
متن کاملSemi-G-filters, Stonean filters, MTL-filters, divisible filters, BL-filters and regular filters in residuated lattices
At present, the filter theory of $BL$textit{-}algebras has been widelystudied, and some important results have been published (see for examplecite{4}, cite{5}, cite{xi}, cite{6}, cite{7}). In other works such ascite{BP}, cite{vii}, cite{xiii}, cite{xvi} a study of a filter theory inthe more general setting of residuated lattices is done, generalizing thatfor $BL$textit{-}algebras. Note that fil...
متن کاملTopological Duality and Lattice Expansions Part II: Lattice Expansions with Quasioperators
Lattices have many applications in mathematics and logic, in which they occur together with additional operations. For example, in applications of Hilbert spaces, one is often concerned with the lattice of closed subspaces of a fixed space. This lattice is not distributive, but there is an operation taking a given subspace to its orthogonal subspace. More generally, ortholattices are lattices w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Multiple-Valued Logic and Soft Computing
دوره 16 شماره
صفحات -
تاریخ انتشار 2010